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Mr. Troy Kravitz Prof. R. Starr

L_ecture Notes, Lectures 6, 7
2.1 Set Theory

Logical Inference
Let A and B be two logical conditions, like A="it's
sunny today" and B="the light outside is very
bright"
A= B
A implies B, if A then B

A <B
A if and only If B, A implies B and B implies A, A
and B are equivalent conditions
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Definition of a Set

{}
{x | X has property P}

{1, 2,..,9,10} = {x|xisaninteger, 1< x <10 }.

Elements of a set
xeA; ygA
X#{X}
Xe{x}

¢ = the empty set (= null set), the set with no elements.

Subsets

AcBorAcBifxe A =>xeB
AcAandpcA.
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Set Equality
A = B Iif A and B have precisely the same elements
A=Bifandonlyif AcBandBcA.

Set Union

AuB
AUB={x|xeAorxeB} (orincludes'and')

Set Intersection

N
ANnB={x|xeAandx e B}

If AnB=¢ we say that A and B are disjoint.
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Theorem 1: Let A, B, C be sets,

a. AnA=A AUA=A (idempotency)
b. AnB=BnA AUB=BUA (commutativity)
c. AnBNnC)=(AnB)nC (associativity)

AuBUC)=(AuB)uC
d An(BuUC)=(AnB)uU(AnC) (distributivity)
AuBNC)=(AuB)Nn(AuC)

Complementation (set subtraction)
\
AB={x|xeA x¢gB}

Cartesian Product
ordered palirs
AxB={X Y)IxeA yeB}.
Note: If x =y, then (X,Vy) = (y, X) .

4
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R = The set of real numbers

R™ = N-fold Cartesian product of R with itself.

RY= RxRXRX...x R, where the product is taken N
times.

The order of elements in the ordered N-tuple (X, y, ...) IS
essential. If x=y, (X,y,...)= VY, X ...).

2.4 R", Real N-dimensional Euclidean space
Read Starr's General Equilibrium Theory, section 2.4.
R* = plane

R® = 3-dimensional space
R = N-dimensional Euclidean space
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Definition of R:

R = the real line
+o0 ¢ R

+1 T X ) -~
closed interval : [a,b]={X|x € R, a<x<Db}.

R is complete. Nested intervals property: Let X' <y
and X',y ]c[x',y'],v=1,23, ... Then there
ISze Rsothatz e [X",y"], forall v.

= N-fold Cartesian product of R.
X e RN | Xx=(X1,X2,...,XN)
X. IS the ith co-ordinate of x.
X = point (or vector) in R"

6
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Algebra of elements of RN
X-I—y=(X1 +VYi1, X2 +VY2, ..., XN -I—yN)

0=(0,0,0,...,0), the origin in N-space
X—Yy=X+ (_y) = (Xl_yl’ X7Yor s XN'yN)

t e R, X € RN, then tx = (txq, tXo, ..., tXn).

N
X, y € RN, x-yz_Z1 xiyi . If p e RVisa price vector
I=

N

and y eR" is an economic action, thenp -y = 21 PnYn IS
N=

the value of the action y at prices p.
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Norm in RN, the measure of distance

N
x| =] = /XX = /;1 Xi2 .

Let X, y € RN . The distance between x and y is j«-y.

|-y = yZixi—yi)? .
Ix-y||>0allx, y e RN
|X-y| =01fandonly if x = .

Limits of Sequences
x',v=123, ...,

Example: x* =1/v. 1,1/2,1/3,1/4,1/5,.... X' =0,

8
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Formally, letx' e R, i=1, 2, .... Definition: We say
x' — xYif for any € > 0, there is q(¢) so that for all
g’ >q(e), Ix¥ —x% <e¢.

So in the example x¥ =1/v, q(e) = 1/e

Letx' e RN, i=1, 2, ... Wesay thatx' — x° if for
each co-ordinaten=1, 2, ..., N, x} —> x9.

Theorem 2.2: Letx' e RN, i=1, 2, .... Then
x' — x° if and only if for any ¢ there is g(¢) such that
for all g’ > q(e), [x¥ —x°| <e.

X° is a cluster point of S = R" if there is a sequence

9
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x'e RN so that X! —X°.

Open Sets
Let X = RN; Xis open if for every x e X there is an
¢>0 sothat |[x—y| < eimpliesy e X.

Openinterval iInR: (a,b)={x|Xx e R,a<x<Db}
¢ and RN are open.

Closed Sets
Example: Problem - Choose a point x in the closed
interval [a, b] (where 0 < a < b) to maximize x°.
Solution: x =b.
Problem - Choose a point x in the open interval

10
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(a, b) to maximize x*. There is no solution in (a, b)
since b ¢ (a, b).

A set is closed if it contains all of its cluster points.

Definition: Let X« RN. X is said to be a closed set if
for every sequence x', v=1, 2, 3, ..., satisfying,

(i) x¥ e X, and

(i) x¥ = x°,
it follows that x° € X.

Examples: A closed interval In R, [a, b] Is closed

A closed ball in R of radius r, centered at ceR",
{xeR"| |x-c| <r}is aclosed set.

A line in R" is a closed set

11
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But a set may be neither open nor closed (for
example the sequence {1/v}, v=1, 2, 3, 4, ... 1S not
closed in R, since 0 is a limit point of the sequence but
IS not an element of the sequence; it is not open since it
consists of isolated points).

Note: Closed and open are not antonyms among sets.
¢ and RN are each both closed and open.

Let X = R". The closure of X is defined as
X={y|thereisx' e X,v=1,2,3,..,s0that X' >y}
For example the closure of the sequence Iin R,
{1/v|v=1,2,3,4,..}Is
{0y {1/v|v=1,2 3,4, ..}

12
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Concept of Proof by contradiction: Suppose we want to
show that A = B. Ordinarily, we'd like to prove this
directly. But it may be easier to show that [not (A =
B)] is false. How? Show that [A & (not B)] leads to a
contradiction. A: x=1, B:x+3=4. Then [A & (not B)]

leads to the conclusion that 1+3+4 or equivalently 11,

a contradiction. Hence [A & (not B)] must fail so A=
B. (Yes, it does feel backwards, like your pocket is
being picked, but it works).

13
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Theorem 2.3: Let XcRN. Xisclosed if RY\ X is
open.

Proof: Suppose RM\ X is open. We must show that X
is closed. If X=R" the result is trivially satisfied. For
X#R", let X' € X, x*—=x°. We must show that x°e X if
RY\ X is open. Proof by contradiction. Suppose not.
Then x°c RN\ X. But R\ X is open. Thus there is an ¢
neighborhood about x° entirely contained in R™\ X.

But then for v large, x* € R\ X, a contradiction.
Therefore x°e X and X is closed. QED

14
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Theorem2.4: 1. X< X
2. X=X Iifand only if X is closed.

Bounded Sets
Def: K(k) = {xIx e RN, Ixil <k, i=1, 2, ..., N} =
cube of side 2k (centered at the origin).
Def: X< RN. Xisbounded if there is k € R so that
X < K(K).

15



UCSD Economics 113 Spring 2009
Mr. Troy Kravitz Prof. R. Starr

Compact Sets
THE IDEA OF COMPACTNESS IS ESSENTIAL!
Def: X< RN. X iscompact if X is closed and
bounded.

Finite subcover property: An open covering of X Is a
collection of open sets so that X is contained in the union
of the collection. It is a property of compact X that for
every open covering there is a finite subset of the open
covering whose union also contains X. That Is, every open
covering of a compact set has a finite subcover.

16
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Boundary, Interior, etc.
X < RN, Interior of X = {yly € X, there is ¢ > 0 so that
X —y|| < & implies x e X}
Boundary X = X\Interior X

Set Summation in R
Let Ac R", B R". Then
A+B={x|x=at+tb,acA beB}

17
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The Bolzano-Weierstrass Theorem, Completeness of RN .
Theorem 2.5 (Nested Intervals Theorem): By an
interval in RN, we mean a set | of the form
| = {(Xl, X2, ..., X|\|)| a1 <x1<hy,
ar <Xo<bhy, ..., an<Xn < Dbpn, aj, bj € R} .
Consider a sequence of nonempty closed intervals I
such that

liohols3o...olko....
Then there is a point in RN contained in all the

Intervals. That i1s, Ix° _Fjli and therefore (o.ﬁl li = ¢ ;
I= I=

the Intersection is nonempty.

Proof:. Follows from the completeness of the reals, the
nested intervals property on R.

18
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Corollary (Bolzano-Welerstrass theorem for
sequences): Letx',i=1, 2,3, ... be abounded
sequence in RN . Then x' contains a convergent
subsequence.

Proof 2 cases: x' assumes a finite number of values, «
assumes an infinite number of values.

It follows from the Bolzano-Weierstrass Theorem for
sequences and the definition of compactness that an
Infinite sequence on a compact set has a convergent
subsequence whose limit is in the compact set.

19
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2.3 Functions

We describe a function f( +) as follows:

For each x € A thereisy € Bso thaty = f(x).

f: A>B.

A = domain of f

B =range of f

graphof f=Sc AxB,S={(X,y) |y =1(X)}

Let TCA.

f(T)={y |y =1(x), x €T} Is the image of T under f.

f*:B— A, f*is known as "f inverse"
fly)={xIxeA y=fx)

20
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2.5 Continuous Functions

Letf:A—> B, AcR™ BcRP,

The notion of continuity of a function is that there are no
jumps in the function values. Small changes in the
argument of the function ( x) result in small changes in the
value of the function (y=f(x)).

Let g, 5(¢), be small positive real numbers; we use the
functional notation d(¢) to emphasize that the choice of 6
depends on the value of €. fis said to be continuous at a
c Aif

(i) for every € > 0 there is 6(¢) > 0 such that
Ix —al < 8(e) = If(x) - f(a)l < &, or equivalently,

()

XVe A v=1, 2, ..., and x¥ — a, implies f(x¥) — f(a)

21
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Theorem 2.6: Letf: A— B , fcontinuous. LetSc B, S
closed. Then f71(S) is closed.

Proof: Let x* ef *(S), X" — x°. We must show that x°ef
(S). Continuity of f implies that

f(x") — f(x°). f(x")eS, S closed, implies f(x°) €S. Thus
x°ef(S). QED

Note that as a consequence of Thm 2.6, the inverse image
under a continuous function of an open subset of the range
IS open (since the complement of a closed set is open).

22
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Theorem 2.7: Letf: A — B, fcontinuous. LetScA, S
compact. Then f(S) is compact.
Proof: We must show that f(S) is closed and bounded.

Closed: Lety' € f(S), v=1,2,..., y*— y°. Show that

y°e f(S). Thereis x*eS, x'=f *(y"). Take a convergent
subsequence, relabel, and x*— x°€S by closedness of S.
But continuity of f implies that f(x")— f(x°) = y° € {(S).

Bounded: For eachye f(S), let C(y)={z| zeB, |y-z|<e}, an
e-ball about y. The family of sets

{f *(C(y))| yef(S)} is an open cover of S (the inverse
Image of an open set under f is open since the inverse
Image of its complement --- a closed set --- Is closed, Thm
2.6). There is a finite subcover. Hence f(S) iIs covered by a
finite family of € balls. f(S) is bounded. QED

23
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Corollary 2.2: Letf: A— R, fcontinuous,Sc A, S
compact, then there are X,Xe S such that

f(X) = sup{f(x)Ix e S} and f(x) = inf{f(x)Ix € S} , where inf
Indicates greatest lower bound and sup indicates least
upper bound.

Corollary 2.2 is very important for economic analysis. It

provides sufficient conditions so that maximizing behavior
takes on well defined values.
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Homogeneous Functions

fRP> RY.

f i1s homogeneous of degree 0 if for every scalar (real
number) A > 0, we have f(A x) = f(X).

f 1s homogeneous of degree 1 if for every scalar A >0, we
have f(A x) = Af(X) .
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